联立直线与椭圆的方程可得:14x2-36x-9=0,
∴x1+x2=
18 |
7 |
9 |
14 |
由弦长公式可得:|MN|=
1+1 |
(
|
30 |
7 |
(2)设以A(1,1)为中点椭圆的弦与椭圆交于E(x1,y1),F(x2,y2),
∵A(1,1)为EF中点,
∴x1+x2=2,y1+y2=2,
把E(x1,y1),F(x2,y2)分别代入椭圆5x2+9y2=45,
得5x12+9y12=45,5x22+9y22=45
∴5(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,
∴10(x1-x2)+18(y1-y2)=0,
∴k=
y1−y2 |
x1−x2 |
5 |
9 |
∴以A(1,1)为中点椭圆的弦所在的直线方程为:y-1=-
5 |
9 |
整理,得5x+9y-14=0.