若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ).求解啊!
人气:180 ℃ 时间:2020-05-24 21:12:13
解答
设F(x)=f(x+1/n)-f(x)
F(0)=f(1/n)-f(0)
F(1/n)=f(2/n)-f(1/n)
…
F[(n-1)/n]=f(1)-f[(n-1)/n]
那么F(0)+F(1/n)+…+F[(n-1)/n]
=f(1/n)-f(0)+f(2/n)-f(1/n)+…+f(1)-f[(n-1)/n]
=f(1)-f(0)
=0
所以F(0)=F(1/n)=…F[(n-1)/n]=0或存在F(i/n)和F(j/n)符号相反(0≤i
推荐
- 设函数f(x)=x2+x+1/2的定义域是{n,n+1}(n是自然数),那么在f(x)的值域中共有_个整数.
- 设f(x)是定义域N*上的函数,f(1)=1,对于任意自然数a,b都有f(a)+f(b)=f(a+b)-ab,求f(x)
- 证明:设f(x)是[0,n]上的连续函数,f(0)=f(n)(n为自然数),那么在(0,n)内至少存在一点ξ,使f(ξ+1)=f(ξ)
- 设f(n)=1+1/2+1/3+...+1/n,是否存在于自然数n的函数g(n),使等式f(1)+f(2)+...+f(n-1)=g(n).[f(n)-1]
- 在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3. (1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差
- 知其不可为而为之的古今中外事例
- 请问:let's get down to the basics 这句话怎么翻译好?
- 1+2+3+4+56+789=
猜你喜欢
- 双曲线x2−y24=1的渐近线方程是_.
- 设函数f(x)=ax^2+bx+c(a>0)且f(1)=-a/2(1)求证函数f(x)有两个零点
- 将下列细胞或细胞器置于蒸馏水中,不会破裂的是( ) A.红细胞 B.叶绿体 C.线粒体 D.洋葱表皮细胞
- 若(a+1)的平方+| b-2013|=0,则2012-a的b次方=?
- 请问“君”、“子”和“君子”的解释
- m为何值时方程组{5x+6y=3m+2{6x+5y=4m-7的解满足x小于0,y大于0
- 利用7,6,9,2,4,0,这6个数中的5个数字组成同时含有因数2,3,5,的所有5位数,共有多少
- 已知点A(0,-1),在抛物线y=2x^2+1上任取一点B,求线段AB的中点满足的方程