证明:设f(x)是[0,n]上的连续函数,f(0)=f(n)(n为自然数),那么在(0,n)内至少存在一点ξ,使f(ξ+1)=f(ξ)
人气:137 ℃ 时间:2020-04-16 16:58:59
解答
n为自然数 n大于等于1
因为f(x)在[0,n]上连续
f(0)=f(n)
所以f(x)不是单调函数
所以函数f(x)存在最大值(最小值)(当x=X时f‘(x)=0)
所以存在m,当f(x)=m时
解出x1 x2(x1小于 x2 )使得x2-x1=1
x1=ξ x2=ξ+1
推荐
- 设函数f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x属于【0,1/2】,使得f(x)=f(x+1/2)
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.
- 若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ).求解啊!
- 设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)
- f(n)=1+1/2+1/3+...1/n,是否存在关于自然数n的函数g(n),使等式f(1)+f(2)+...+f(n-1)=g(n)×【f(n)-1】对于n≧2的一切自然数都成立?并证明你的结论.
- 知其不可为而为之的古今中外事例
- 请问:let's get down to the basics 这句话怎么翻译好?
- 1+2+3+4+56+789=
猜你喜欢
- 双曲线x2−y24=1的渐近线方程是_.
- 设函数f(x)=ax^2+bx+c(a>0)且f(1)=-a/2(1)求证函数f(x)有两个零点
- 将下列细胞或细胞器置于蒸馏水中,不会破裂的是( ) A.红细胞 B.叶绿体 C.线粒体 D.洋葱表皮细胞
- 若(a+1)的平方+| b-2013|=0,则2012-a的b次方=?
- 请问“君”、“子”和“君子”的解释
- m为何值时方程组{5x+6y=3m+2{6x+5y=4m-7的解满足x小于0,y大于0
- 利用7,6,9,2,4,0,这6个数中的5个数字组成同时含有因数2,3,5,的所有5位数,共有多少
- 已知点A(0,-1),在抛物线y=2x^2+1上任取一点B,求线段AB的中点满足的方程