设A(x1,y1),B(x2,y2)是椭圆y^2/4+x^2=1上的两点,已知向量m=(x1,y1/2),向量n=(x2,y2/2),若两向量垂直,
0为坐标原点,试问三角形AOB的面积是否为定值,如果是,请给予证明,如果不是,请说明理由
人气:451 ℃ 时间:2020-05-17 15:10:16
解答
我是用几何方法做的.注意向量m,n的特征,于是对椭圆方程做代换:y'=y/2,也即y=2y',(就是把椭圆按y轴方向压扁到原来的1/2)得到:x^2+(y')^2=1是半径为1的圆,也就是说m和n(m,n向量的起点在原点)的终点都在这个圆上...
推荐
- 已知A(x1,y1)B(x2,y2)是椭圆C:x^2/9+y^2/4=1上不同的两个点,O为坐标原点 1.若向量OA+α向量OB=0
- 设A(x1,y1)B(x2,y2)是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上两点.O为坐标原点,向量m=(x1/a,y1/b)n=(x2/a,y2/b)且m*n=0
- 椭圆X225+Y29=1上不同三点A(x1,y1),B(4,9/5),C(x2,y2)与焦点F(4,0)的距离成等差数列.(1)求证x1+x2=8;(2)若线段AC的垂直平分线与x轴的交点为T,求直线的斜率.
- 已知A(x1,y1)、B(x2,y2)是椭圆x^2/a^2+y^2/b^2=1 (a>b>0)上的两个点,已知向量m(x1/b,y1/a)向量n(x2/b,y2/a)若向量m*向量n=0,且椭圆的e=(√3)/2,短轴长为2,o为坐标原点.
- 设A(x1,y1),B(4,95),C(x2,y2)是右焦点为F的椭圆x225+y29=1上三个不同的点,则“|AF|,|BF|,|CF|成等差数列”是“x1+x2=8”的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.
- the program ended//英语句子对吗?
- 单项式5x²y,3x²y²,-4xy²的和
- I think it is difficult to do the work in an hour.句子正确吗?
猜你喜欢