(1)∵在梯形ABCD中,AD∥BC,AB=DC=AD=3,∠ABC=60°,
∴∠A=∠D=120°,
∴∠AEB+∠ABE=180°-120°=60°.
∵∠BEF=120°,
∴∠AEB+∠DEF=180°-120°=60°,
∴∠ABE=∠DEF.
∴△ABE∽△DEF.
∴AE/DF=AB/DE
∵AE=x,DF=y,
∴x/y=3/(3-x)
∴y与x的函数表达式是y=-(1/3)x^2+x
(2)y=-1/3(x+3/2)^2+3/4
∴当x=-3/2时,y有最大值,最大值为3/4