怎么证明内积在任意一组基下的度量矩阵是可逆阵
人气:424 ℃ 时间:2020-06-30 22:07:48
解答
两种证法.
可以用合同变换的性质:
在不同基下的度量矩阵相差一个合同变换.
合同的矩阵秩相等.
而在标准正交基下(一定存在),度量矩阵为单位阵,是满秩的.
因此度量矩阵都是满秩的,即可逆.
也可以用定义证明:
设内积在一组基ε1,ε2,...,εn下的度量矩阵为A.
假设A不可逆,则存在非零列向量X满足AX = 0.
考虑以X为坐标的向量v = (ε1 ε2 ...εn)X.
则(v,v) = X'AX = 0,但由X非零,ε1,ε2,...,εn是一组基,有v非零.
与内积的正定性矛盾.
因此A一定可逆.
推荐
- 设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并写出(A^-1+B^-1)^-1,
- 一道关于矩阵可逆性的证明题:n阶矩阵A,B和A+B都可逆,证明A^(-1)+B(-1)也可逆,并求其逆阵.
- 设矩阵A,B及A+B都可逆,证明A^-1+B^-1也可逆,并求其矩阵
- 设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵,
- 矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似
- 一个表面积为36平方分米的正方体,沿一个面切成4个长方体后,表面积会增加多少?
- 四十五分之四除以二又七分之六=
- y^2=-x^4+16的图像怎么画
猜你喜欢