证明6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除?
提示:判断6x^5+11x^4+5x^3+5x^2-x-6是否含因式(x+i)(x-i)
人气:427 ℃ 时间:2020-02-03 11:09:08
解答
6x^5+11x^4+5x^3+5x^2-x-6
=6x^5+6x^3+11x^4-x^3+5x^2-x-6
=6x^3(x^2+1)+11x^4+11x^2-x^3-6x^2-x-6
=6x^3(x^2+1)+11x^2(x^2+1)-(x^3+x)-(6x^2+6)
=6x^3(x^2+1)+11x^2(x^2+1)-x(x^2+1)-6(x^2+1)
所以,得证.
推荐
- 证明6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除?
- 验证(2^(X+2))*(3^x)+5x-4能被25整除
- m,n是什么数时,多项式x^4-5x^3+11x^2+mx+n能被x^2-2x+1整除,并求出商式
- 求x^2-3x/x^2-6x+9*x^2-11x+30/x^2-5x-1
- 证明:x的3次方+5x+1998能被6整除
- -1到-5之间只有3个负数._.(判断对错)
- 一道六年级语文题~~快来~急
- different,in,Shanghai,was,many,years,ago,life,very连词成句
猜你喜欢