若二次函数f(x)=x^2+ax+b,对于任意的实数x都有f(1+x)=f(1-x)成立.
(1)求实数a的值
(2)求证:函数f(x)在区间【1,+∞)上是增函数
人气:296 ℃ 时间:2020-06-06 19:11:22
解答
f(1+x)=(1+x)^2+a(1+x)+b
f(1-x)=(1-x)^2+a(1-x)+b
所以(1+x)^2+a(1+x)+b=(1-x)^2+a(1-x)+b
1+2x+x^2+a+ax+b=1-2x+x^2+a-ax+b
(4+2a)x=0
恒成立
所以4+2a=0
a=-2
f(x)=x^2-2x+b
令m>n>=1
则f(m)-f(n)=m^2-2m+b-n^2+2n-b
=(m^2-n^2)-2(m-n)
=(m+n)(m-n)-2(m-n)
=(m-n)(m+n-2)
m>1,n>=1
所以m+n>2,m+n-2>0
m>n,m-n>0
所以(m-n)(m+n-2)>0
f(m)-f(n)>0
即当m>n>=1时
f(m)>f(n)
所以f(x)在区间[1,正无穷)上是增函数
推荐
- 已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为( ) A.2 B.52 C.3 D.32
- 已知二次函数f(x)=ax^2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤(1/8)(x+2)^2成立
- 已知二次函数y=ax^2+bx+c同时满足下列条件,1.f(-1)=0.2.对于任意实数x,都有f(x)≥x
- 已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为( ) A.2 B.52 C.3 D.32
- 已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立. (1)求实数a的值; (2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.
- 先化简,再求值:(5x-2)(x-3)-2(x+6)(x-5)-3(x²-6x-1),其中x=2009.
- 找规律 填数字
- 2367890精确 十万
猜你喜欢