数列an,a1=a2=1,a(n+2)=a(n+1)+tan.(1)t=1时,写出2个能被5整除的项;证明an能被5整除,则a(n+5
)也能被5整除.
(2)t=2时,求前2n项和S2n
人气:461 ℃ 时间:2020-04-11 03:57:55
解答
(1)
t=1
a(n+2)=a(n+1)+an
a1=a2=1
a5=5,a10=55能被5整除
若an能被5整除
则a(n+5)=a(n+4)+a(n+3)
=a(n+3)+a(n+2)+a(n+3)
=2a(n+3)+a(n+2)
=2[a(n+2)+a(n+1)]+a(n+2)
=3a(n+2)+2a(n+1)
=3[a(n+1)+an]+2a(n+1)
=5a(n+1)+3an
显然可以被5整除
(2)
t=2
a(n+2)=a(n+1)+2an
则a(n+2)+a(n+1)=2a(n+1)+2an=2[a(n+1)+an]
所以数列{a(n+1)+an}是等比数列,公比是q=2
那么a(n+1)+an=(a2+a1)*q^(n-1)=(1+1)*2^(n-1)=2^n
那么前2n项和S2n=a1+a2+a3+a4+...+a(2n-1)+a(2n)
=(a1+a2)+(a3+a4)+...+[a(2n-1)+a(2n)]
=2^1+2^3+...+2^(2n-1)
=2*(1-4^n)/(1-4)
=2(4^n-1)/3
如果不懂,请Hi我,祝学习愉快!
推荐
- 若t=1数列{an}中,若a1=a2=1,a(n+2)=a(n+1)=tan证明:若an能被5整除,则a(n+5)也能被5整除
- 数列{an}中,若a1=a2=1,且an+2=an+1+an(n∈N^2),用数学归纳法证明:a5n能被5整除
- 已知数列{an}中,a1=1,a2=2,an+1=2an+an-1(n∈N*),用数学归纳法证明a4n能被4整除,假设a4k能被4整除,应证( ) A.a4k+1能被4整除 B.a4k+2能被4整除 C.a4k+3能被4整除 D.a4k+
- 数列an中,a1=a2=1,且a(n+2)=a(n+1)+an,用数学归纳法证明:a5n能被5整除
- 已知a0=0,a1=1,an+1=8an-an-1(n=1,2,.). 在数列{an}中是否有无穷多个能被15整除的项.证明
- give one's life to的life是可数的吗?
- 解释下列带括号的词语1.月景尤不可(言)2.(别)是一种趣味
- 一元二次方程的x2=x两根之和与积分别是_,_.
猜你喜欢