(1)f(a+b)=f(a)×f(b) ,令a,b为0.解得f(0)=1
令b=-a,代入f(a+b)=f(a)×f(b),得到f(a)*f(-a)=1
即,f(a)与f(-a)互为倒数.令a大于0.即f(a)大于1
所以f(-a)=1/f(a)大于0,小于1恒成立.所以对x属于R,f(x)大于0
(2)若f(x)在R上为增函数,设a大于b,即【f(b)/f(a)】小于1
所以f(a+b)/f(a)=f(b),代入式子,得到f(a+b)小于f(a)×f(a)
成立,所以f(x)在R上为增函数
(3)根据f(a+b)=f(a)×f(b),得f(3x-x^2)大于1
又因为x大于0时,f(x)大于1.所以只需3x-x^2大于0即可
解得x属于(0,3)