过点P(2,1)的直线L与椭圆X^2/2+Y^2=1相交,求L被椭圆截得的弦的中点的轨迹方程.
人气:476 ℃ 时间:2019-10-18 02:58:24
解答
直线L:y=k(x-2)+1;椭圆:X^2/2+Y^2=1,交点A(x1,y1),(x2,y2),中点(x0,y0);
L代入椭圆方程:(2k^2+1)x^2+4k(1-2k)x+8k(k-1)=0;
韦达定理:2x0=x1+x2=4k(2k-1)/(2k^2+1),2y0=yi+y2=2(1-2k)/(2k^2+1);两式相除:k=-1/2*x0/y0,代入2式化简即得中点方程:(y-1/2)^2/(3/4)+(x-1)^2/(3/2)=1,为一个平移后的椭圆.
P点是在给定椭圆的准线上的,应该有其他简便方法.
推荐
- 已知椭圆(x^2)/2+y^2=1,过点A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程.
- 过点P(2,1)的直线L与椭圆X2/2+Y2=1相交,求L被椭圆截得的弦的中点的轨迹方程.
- 已知椭圆x^2/2+Y^2=1 过点A(2,1)椭圆的割线,求截得弦中点的轨迹方程
- 求过点(0,2)的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.
- 已知椭圆x^2/2+y^2=1,(1)过椭圆的左焦点F引椭圆的割线,求截得的弦的中点P的轨迹方程(2)求斜率为2的
- ___ boy is Tom and ___ girl is Yuky.用a ,an ,the 填空并语法说明
- 20克的()是15克,20米是()的5分之4,()是30的6分之5,5分之4的倒数的4分之1是(),()的5分之2等于120的
- 正比例函数、反比例函数、一次函数、二次函数的表达式及增减性
猜你喜欢