∴∠BDC=90°,
∴∠ADC=90°,
∴∠AFD+∠DAF=90°.
∵CA是⊙O的切线,
∴∠ACB=90°,
∴∠AEC+∠EAC=90°,
又∵∠DAF=∠EAC,
∴∠AFD=∠AEC,
又∵∠EFC=∠AFD,
∴∠EFC=∠AEC,
∴CE=CF;
(2)作FG⊥AC于点G.
∵直角△BCD中,∠B+∠BCD=90°,
又∵∠BCD+∠ACD=90°,
∴∠ACD=∠B.
∵AE平分∠BAC,
∴FG=DF,
又∵在直角△CFG中,sin∠ACD=sinB=
FG |
FC |
3 |
5 |
∴DF:CF=FG:FC=3:5.