已知三角形ABC内接于圆O,AB的延长线与过点C的切线GC相交于点D,E为圆上一点,BE与AC相交于点F,CE=CB.
求证:CB²-CF²=BF-FE
人气:335 ℃ 时间:2019-10-11 12:25:49
解答
楼主的书写欠规范,更改为:"求证:CB²-CF²=BF×FE."证明:CE=CB,则:∠CBF=∠CEB;又∠BAC=∠CEB,则:∠BAC=∠CBF.又∠BCF=∠ACB(公共角相等).故⊿BCF∽⊿ACB,BC/AC=CF/CB.即BC²=CF×AC=CF×(CF+AF)=CF...
推荐
- 如图,△ABC内接于⊙O,AB的延长线与过C点的切线GC相交于点D,BE与AC相交于点F,且CB=CE. 求证:(1)BE∥DG; (2)CB2-CF2=BF•FE.
- 如图,已知Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC于D,过D作圆O的切线DE,交BC于E.求证:BE=CE
- △ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,
- 圆O是三角形ABC的外接圆,角ACB的平分线CE交AB于点 D,交圆O于点E,圆O的切线EF交CB
- 如图RT三角形ABC中∠ABC等于90°以AB为直径的圆O交AC于点D过点D做元O的切线DE叫交BC与E求证BE等于CE
- English Questions:
- 中国明代的官员万户,是世界历史上第一个乘火箭上天的人.他被国际航天史学家公认为什么的先驱
- 题号:17 题型:单选题(请在以下几个选项中选择唯一正确答案) 本题分数:4
猜你喜欢