数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}
公式;(2)若对于数列{cn}有cn=an·bn,请求出数列{cn}的前n项和Rn
人气:291 ℃ 时间:2019-11-06 06:49:09
解答
(1)
∵Sn=(1/2)n^2+pn,Tn=2^n-1
∴S3=9/2+3p,S4=8+4p,T3=7,T4=15
∴a4=S4-S3=(8+4p)-(9/2+3p)=7/2+p,b4=T4-T3=15-7=8
∵a4=b4
∴7/2+p=8
∴p=9/2.
∴Sn=(1/2)n^2+(9/2)n
∴a1=S1=5,S(n-1)=(1/2)(n-1)^2+(9/2)(n-1)=(1/2)n^2+(7/2)n-4(n≥2)
∴an=Sn-S(n-1)=[(1/2)n^2+(9/2)n]-[(1/2)n^2+(7/2)n-4]=n+4(n≥2)
∵a1=5=1+4
∴数列{an}的通项公式为an=n+4.
∵Tn=2^n-1
∴b1=T1=1,T(n-1)=2^(n-1)-1(n≥2)
∴bn=Tn-T(n-1)=(2^n-1)-[2^(n-1)-1]=2^(n-1)(n≥2)
∵b1=1=2^(1-1)
∴数列{bn}的通项公式为2^(n-1).
(2)cn=(n+4)×2^(n-1)
则Rn=5×1+6×2+7×2^2+…+(n+4)×2^(n-1)
2Rn= 5×2+6×2^2+…+(n+3)×2^(n-1)+(n+4)×2^n
两式相减:-Rn=5+2+2^2+…+2^(n-1)-(n+4)×2^n
=5+2[1-2^(n-1)]/(1-2)-(n+4)×2^n
=5+2^n-2-(n+4)×2^n
=3-(n+3)×2^n
那么Rn=(n+3)×2^n-3.
推荐
- 数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}的通项公式;
- 已知数列{an}的前n项和Sn=n²/2+pn,{bn}的前n项和Tn=2(n次方)-1,且a4=b4.
- 已知数列an的前n项和为Sn=n²+n求(1)数列的通项公式(2)若Bn=(1/2)的an次方+n 求数列Bn的前n项和Tn
- 设数列an的前n项和为Sn,若Sn=a1(3的n次方-1)/2(对于所有的n大于等于1),且a4=54
- 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn
- 设函数f(x)=|x-2|+x 求函数fx值域
- 用语文写一篇日记的要素有哪些?
- 菌种培养中的摇床主要起什么作用,对微生物有什么好处,转子培养是什么有什么不同,希望全面的回答,
猜你喜欢
- The new dress looks very nice.(改为感叹句,每空一词) ___ _
- 已知x=1时,ax^5+bx^3-cx+3的值为10,那么x=-1时,ax^5+bx^3-cx+17值
- (x-y)的五次方*(y-x)的五次方+【(x-y)五次方】的²
- 匡衡字稚圭,匡衡勤学而无烛.邻居有烛而不逮,衡乃穿壁引其光,以书映光而读之.邑人大姓文不识,家富多书,衡乃与其佣作而不求偿.主人怪问衡,衡曰:“愿得主人书遍读之.”主人感叹,资给以书,遂成大学.匡衡.字稚圭.勤学而无烛.邻舍有烛而不逮.衡乃
- co2缓冲液既可以释放co2又可以产生co2吗
- 数学函数极限和连续题
- x的2次方-2xy+y的2次方-2x+2y+1=?
- enrich-membership是什么意思