数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}的通项公式;
(2)若对于数列{cn}有cn=an·bn,情求出数列{cn}的前n项和Rn
人气:117 ℃ 时间:2019-11-09 07:48:25
解答
(1)
∵Sn=(1/2)n^2+pn,Tn=2^n-1
∴S3=9/2+3p,S4=8+4p,T3=7,T4=15
∴a4=S4-S3=(8+4p)-(9/2+3p)=7/2+p,b4=T4-T3=15-7=8
∵a4=b4
∴7/2+p=8
∴p=9/2.
∴Sn=(1/2)n^2+(9/2)n
∴a1=S1=5,S(n-1)=(1/2)(n-1)^2+(9/2)(n-1)=(1/2)n^2+(7/2)n-4(n≥2)
∴an=Sn-S(n-1)=[(1/2)n^2+(9/2)n]-[(1/2)n^2+(7/2)n-4]=n+4(n≥2)
∵a1=5=1+4
∴数列{an}的通项公式为an=n+4.
∵Tn=2^n-1
∴b1=T1=1,T(n-1)=2^(n-1)-1(n≥2)
∴bn=Tn-T(n-1)=(2^n-1)-[2^(n-1)-1]=2^(n-1)(n≥2)
∵b1=1=2^(1-1)
∴数列{bn}的通项公式为2^(n-1).
(2)cn=(n+4)×2^(n-1)
则Rn=5×1+6×2+7×2^2+…+(n+4)×2^(n-1)
2Rn= 5×2+6×2^2+…+(n+3)×2^(n-1)+(n+4)×2^n
两式相减:-Rn=5+2+2^2+…+2^(n-1)-(n+4)×2^n
=5+2[1-2^(n-1)]/(1-2)-(n+4)×2^n
=5+2^n-2-(n+4)×2^n
=3-(n+3)×2^n
那么Rn=(n+3)×2^n-3.
推荐
- 数列{an}的前n项和为Sn=1/2n²+pn,{bn}的前n项和为Tn=[2(n次方)]-1,且a4=b4.(1)求数列{an}、{bn}
- 已知数列{an}的前n项和Sn=n²/2+pn,{bn}的前n项和Tn=2(n次方)-1,且a4=b4.
- 已知数列an的前n项和为Sn=n²+n求(1)数列的通项公式(2)若Bn=(1/2)的an次方+n 求数列Bn的前n项和Tn
- 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn
- 设数列an的前n项和为Sn,若Sn=a1(3的n次方-1)/2(对于所有的n大于等于1),且a4=54
- 生物能和化学能有什么区别?
- 英语翻译
- 南美洲最南端的海峡叫什么?
猜你喜欢
- 按1、5、9、13、17的规律地20个数
- 给水管道如果设计成重力流,污水管道,雨水管道如果设计成压力流,分别会面临哪些问题?
- Jenny and I are both students,( ) are in the same class
- 婲萦的读音是?
- have breakfast have dinner have lunch 三个词组中间可以加a吗?如果可以,加a用得多还是不加a用的多?
- 200毫升38%的盐酸和足量的大理石反应可生成二氧化碳多少升(38%的盐酸密度是1.19,二氧化碳的密度是1.977
- 先画出符合条件的图形,再求解;已知,∠AOB=50°,∠COB=30°,求∠AOC的度数
- 王维除了九月九日忆山东兄弟,还有什么诗