已知F1、F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足向量OA+向量OB=0(O为坐标原点),向量AF2*向量F1F2=0,椭圆的离心率等于/2
(1)求直线AB的方程
(2)若三角形ABF2的面积等于4√2,求椭圆的方程
(3)在(2)的条件下,椭圆上是否存在点M使得三角形MAB的面积等于8√3?若存在,求点M坐标;不存在,说明理由
人气:206 ℃ 时间:2019-12-11 03:29:16
解答
给你一点提示,自己做有效果些.设A(X1,Y1)B(X2,Y2)既然OA+OB=0,那么就有X1+X2=0,Y1+y2=0所以直线AB一定关于原点对称,即直线为y=kXAF2*F1F2=0,AF2垂直于X轴,A点你应该求得出,A(c,b^2/a)求出斜率,最后用a,b代入最...
推荐
- 已知椭圆x^2/4+y^2=1的焦点为f1,f2,抛物线y^2=px与椭圆在第一象限内的焦点为q,若角F1QF2=60度
- 已知F1,F2是椭圆x*x/a*a+y*y/b*b=1(a>b>0)的左右焦点,A是椭圆上位于第一象限内的一点
- 已知F1、F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,若AF1*AF2=0,
- 已知F1、F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,A是椭圆上位于第一象限内的一点,若向量AF2*向量F1F2等于0,椭圆的离心率等于√2/2,△AOF2的面积为2√2(O点为坐标原点),求椭圆方程.
- 已知F1\F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,A是位于第一象限内的一点,
- 设矩阵A=(2 2 1,3 1 5,3 2 3),求A的负一次方
- 已知a,b是方程x-4x+m=0的两个根,b,c是方程x-8x+5m=0的两个根,则m的值为?
- 3(x+4)=9x+6的解
猜你喜欢