已知三角形ABC的面积S满足3≤S≤3*根号3且向量AB*向量BC=6,向量AB与向量BC的夹角为a.求a的取值范围
求f(a)=sin^2a+2sinacosa+3cos^2a的最小值
人气:467 ℃ 时间:2019-10-09 04:33:47
解答
记|AB|=c;|BC|=a;
3≤s=a*c*sinB/2≤3*根号3;(1)
向量AB*向量BC=6=a*c*cos(180度-B),
所以a*c*cosB=-6;(2)
(1)/(2)化简得:
-根号3≤tanB≤-1;
所以B 的取值范围为:120度≤B≤135度
所求角为B的补角,所以45度≤a≤60度!
化简后f(a)=根号2*sin(2*a+45度)+2(45度≤a≤60度);
所以当a=60度时,取最小值,最小值为(3+根号3)/2;
推荐
- 已知三角形ABC的面积S满足根号3大于等于S小于等于3,且向量AB*向量BC=6,其夹角为a
- 1.已知三角形ABC的面积S满足 根号3≤S≤3,且向量AB乘以向量BC等于6,向量AB与向量BC的夹角为θ.
- 已知△ABC的面积S=3,∠A=π3,则AB•AC= _ .
- 已知三角形ABC的面积S满足根号3小于或等于S小于或等于3,且向量AB×向量BC=6,向量AB和向量BC的夹角为a,
- 已知三角形ABC的面积S满足根号3大于等于S小于等于3,且向量AB*向量BC=6,其夹角为a (1)求a的取值范围(2)求f(a)=(sina)^2+2sina*cosa+3(cosa)^2的最小值 最大值
- 在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,CD=根号2cm,AB=4cm,则△ABC的面积为?题目没有图
- 用反证法证明命题”一个三角形中至少有两个锐角”,第一步是假设_______.
- 抛体运动速度大小的变化量与速度的变化量的大小
猜你喜欢