数列{an}=n,若数列{cn}满足a1c1+a2c2+.+ancn=n(n+1)(n+2)q求数列前n项和Wn
人气:226 ℃ 时间:2020-04-04 15:36:24
解答
1,a1c1+a2c2+.+ancn=n(n+1)(n+2)q则,
2,a1c1+a2c2+.+ancn+a(n+1)c(n+1)=(n+1)(n+2)(n+3)q
所以2,-1,推出a(n+1)c(n+1)=(n+1)(n+2)(n+3)q-n(n+1)(n+2)q
又{an}=n所以{cn}=(2n+4)q
所以cn为等差数列所以Wn就好求了2中的(n+3)怎么来的?n变成n+1 n+2变成n+3
推荐
- 设a1,a2,.an为实数,证明a1c1+a2c2+.+ancn小于等于a1^2+a2^2.an^2.其中c1,c2..cn是a1,.an的任一排列,用排序不等式解
- 数列{an}满足an=1 + an = 4n - 3, 当a1=2时 求前n项和Sn
- 设数列{an}的前n项和为Sn,且满足an=2-Sn(n∈N*). (Ⅰ)求a1,a2,a3,a4的值并猜想这个数列的通项公式 (Ⅱ)证明数列{an}是等比数列.
- 数列{an},a1=1,3anan-1+an-an-1=0(n≥2).1、求an;2、若λan+1/an+1≥λ对任意n≥2恒成立,求实数λ的
- 在等比数列{an}中,a1=2,前n项和为Sn,若数列{an+1}也是等比数列,则Sn等于( ) A.2n+1-2 B.3n C.2n D.3n-1
- 氧气与二氧化碳在血液中的运输与特点
- 1928年奥运会结束后,国际足联召开代表会议,一致通过决议,举办四年一次的世界足球锦标赛.至今,总共举办过( )届的世界足球锦标赛.
- 直角坐标系中,以P(2,1)为圆心,r为半径的圆与坐标轴恰好有三个公共点,则r的值为_.
猜你喜欢
- 王奶奶用篱笆靠墙围了一个半圆形的鸡场.篱笆的全长为28.26米,鸡场的面积是多少平方米?
- 有一堆钢管共18层,上面第一层有5根,下面第一层都比上一层多一根,这堆钢管共有多少根?
- “澳大利亚是世界上唯一覆盖整个大陆的国家,从北到南距离为3220公里,从东到西3860公里,面积大体相当于
- 铁丝在氧气中燃烧的化学方程式可以读作
- 在100克盐水中,盐与水的比是1:9,那么盐水中水的质量是?甲乙两数的比是5比4,如果甲数是40,则乙数是?
- 巧连数中的破麦剖梨是什么意思?
- 习题19.2 1——3题答案
- 在一条长2500米的公路两侧架设电线杆,每隔50米架一根(两端都架设).