已知函数f(x)=ax3-6ax2+b,问是否存在实数a、b使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a、b的值.并指出函数的单调区间.若不存在,请说明理由.
人气:428 ℃ 时间:2019-10-17 05:37:06
解答
a≠0时,f′(x)=3ax2-12ax=3a(x2-4x)令f′(x)=0,得x=0,或x=4∉[-1,2](舍)①a>0时,如下表∴当x=0时,f(x)取得最大值,∴b=3;②a<0时,如下表∴当x=0时,f(x)取得最小值,∴b=-29又f(2)=-16a-29...
推荐
- 已知函数f(x)=2^2x-5/2*2^x+1-6,其中x属于[0,3], (1)求f(x)最大值和最小值 (2)若实数a满足f(x)-a≧0恒成立,求a
- 已知函数f(x)=(1-x)/ax+lnx,且a为正实数,当a=1时,求f(x)在[1/2,2]上的最大值和最小值
- 已知函数f(x)=x3-3/2ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2. (1)求f(x)的解析式; (2)若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围.
- 已知函数f(x)=ax三次方-6ax平方+b,问是否存在实数a.b使f(x)在【-1,2】上去的最大值3,最小值-29,若存在
- 已知函数f(x)=ax3-6ax2+b(x∈[-1,2])的最大值为3,最小值为-29,求a、b的值.
- 《如果我错了》文章
- 甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数 甲比乙多搬了386块砖.用方程
- 在直角三角形ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE垂直AB,垂足为E.求证;三角形DBE的周长等于A
猜你喜欢