a1=S1=p+q.
当n≥2时,an=Sn-Sn-1=pn-1(p-1)
∵p≠0,p≠1,∴ =p
若{an}为等比数列,则 =p
∴ =p,
∵p≠0,∴p-1=p+q,∴q=-1
这是{an}为等比数列的必要条件.
下面证明q=-1是{an}为等比数列的充分条件.
当q=-1时,∴Sn=pn-1(p≠0,p≠1),a1=S1=p-1
当n≥2时,an=Sn-Sn-1=pn-pn-1=pn-1(p-1)
∴an=(p-1)pn-1 (p≠0,p≠1)
=p为常数
∴q=-1时,数列{an}为等比数列.即数列{an}是等比数列的充要条件为q=-1.