(2)显然函数的定义域关于原点对称,f(-x)=(
| 1 |
| 2−x−1 |
| 1 |
| 2 |
| 2x |
| 1−2x |
| 1 |
| 2 |
=(
| 2x−1+1 |
| 1−2x |
| 1 |
| 2 |
=(-1+
| 1 |
| 1−2x |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
故函数f(x)为偶函数.
(3)当x>0时,
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
当x<0时,
| 1 |
| 2x−1 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
综上可得,f(x)>0.
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2−x−1 |
| 1 |
| 2 |
| 2x |
| 1−2x |
| 1 |
| 2 |
| 2x−1+1 |
| 1−2x |
| 1 |
| 2 |
| 1 |
| 1−2x |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2x−1 |
| 1 |
| 2 |
| 1 |
| 2x−1 |
| 1 |
| 2 |