证明题:设f(x)在[1,2]上有二阶导数,且f(2)=0.又F(x)=(x-1)^2f(x),证明:在区间(1,2)内至少存在一点ζ,使得F‘’(ζ)=0
人气:351 ℃ 时间:2019-08-18 18:52:58
解答
由罗尔定理,F(1)=F(2)=O,所以在〔1,2〕上必有一点§使得F'(§)=O.又函数不为常数,§不等于1,又F'(1)=O,所以在(1,§)必上有一点a使得F''(a)=O
推荐
- 设函数f(x)在[1,2]上有二阶导数,且f(2)=0,又F(x)=(x-1)^2f(x),证明:在(1,2)内至少存在一个点&
- 若f(x)有二阶导数,证明f''(x)=lim(h→0)f(x+h)-2f(x)+f(x-h)/h^2.
- 若f(x)在[0,1]上有二阶导数,且f(1)=f(0)=0,F(x)=x^2f(x),证明在(0,1)内至少有一点a,使得F''(a)=0.
- 若f(x)在〔0,1〕上有二阶导数,且f(1)=0,设F(x)=x^2f(x),证明:在(0,1
- 设f(x)在【0,1】上有二阶导数,f(1)=0,F(x)=x^2f(x),证明在(0,1)内至少有一点的二阶导数等于0.
- 杠杆的动力臂是阻力臂的2倍,使杠杆转动的动力就是阻力的__.若动力是阻力的n倍,则动力臂是阻力臂的___
- 已知函数f(2x+1)=x²-2x+1则f(5)=
- 一个圆形水池,周长是188.4米,它的占地面积是多少平方米?
猜你喜欢