已知数列满足a(n+1)=1/(2-an),a1=a,(1)求a1,a2,a3,a4;(2)猜想数列{an}的通项公式,并用数学归纳法证明
人气:449 ℃ 时间:2019-08-18 14:45:35
解答
(1),a2=1/(2-a),a3=(2-a)/(3-2a),a4=(3-2a)/(4-3a);
(2),猜想数列{an}的通项公式an=[(n-1)-(n-2)a]/[n-(n-1)a],(a≥2);
设当n=k时通项公式成立,ak=[(k-1)-(k-2)a]/[k-(k-1)a],∵a(k+1)=1/(2-ak),
∴a(k+1)=1/{2-[(k-1)-(k-2)a]/[k-(k-1)a]}=[k-(k-1)a]/[2k-2(k-1)a-(k-1)+(k-2)a]=[k-(k-1)a]/[(k+1)-ak],当n=k+1时a(k+1)=[k-(k-1)a]/[(k+1)-ak]通项公式成立;则数列{an}的通项公式为:an=[(n-1)-(n-2)a]/[n-(n-1)a],(a≥2).
推荐
- 数列an中,a1=1,a(n+1)-2an=(n+2)/(n(n+1)),求a2,a3,a4,猜想数列的通项公式并用数学归纳法证明
- 已知{an}满足a1=1,an+1=an/an+2(n属於N*) (1)求a2 a3 a4 (2)猜想数列{an}的通项公式,用数学归纳法证明
- 在数列{an}中,已知a1=1/3,a1+a2+.+an/n=(2n-1)an (1)求,a2,a3,a4,并猜想an的表达式 (2)用数学归纳法
- 数列{An}满足An+1=An^2-nAn+1,A1=1,求A2,A3,A4,并猜想An的一个通项公式,并用数学归纳法证明
- 数列an满足a1=1/6,前n项和sn=n(n+1)an/2 1.求a2.a3,a4 2求an的通式并用数学归纳法证明
- 请帮我检查这段英文有错误么.
- 卖火柴小女孩是不是童话故事
- 1光年等于多少米?等于多少千米?
猜你喜欢