已知动点P到定点F(√2,0)的距离与点P到定直线l:x=2√2的距离之比为√2/2.
在轨迹C上求一点M(x,y)使得x+√2y取到最大值
人气:171 ℃ 时间:2020-04-12 16:15:13
解答
根据椭圆的定义可得到P点的轨迹:
c/a=√2/2 c=√2 a=2 b²=a²-c² b=√2
x²/4+y²/2=1
或者直接算:
((x-√2)²-y²)÷(x-2√2)²=1/2
化简的x²+2y²=4
设x+√2y=t,可得直线l:y=-√2/2x+√2/2t,√2/2t为截距
画图可知,当直线l与椭圆C相切且截距在x轴上方时,t最大,此时切点为M
可得l的垂线y=√2x,且与椭圆C相较于切点M
解得M(√2,1),t=x+√2y=√2+√2=2√2
或者
4=x²+2y²≥2√2xy
xy≤√2
x+√2y=√(x²+2y²+2√2xy)
因为b=√a为单增函数且x²+2y²=4
x+√2y=√(4+2√2xy)
xy≦√2
故当xy=√2时有最大值
x+√2y=√(4+2√2×√2)=2√2
推荐
- 已知动点P到定点F(√2,0)的距离与点P到定直线l:x=2√2的距离之比为√2/2.
- 已知动点P到定直线x=-2的距离与定点F(1,0)的距离的差为1.
- 已知p>0,动点M到定点F(p/2,0)的距离比M到定直线l:x=-p的距离小p/2
- 已知动点P到定点F(4,0)的距离与它到定直线L:x=8的距离之比为1/2,求点P的轨迹方程.
- 已知定点F(p/2,0),(p>0)定直线l:x=-p/2,动点M(x,y)到定点的距离等于到定直线l的距离,
- 求 作文 生活中的喜怒哀乐 和 身边的友谊 二选一 1000字 跪求~~
- 原价为180元的电风扇打八折,现价为多少元?
- 97+X等于0.6*《165+X》
猜你喜欢