> 数学 >
已知等比数列{an}中,a1=2,a3=18,等差数列{bn}中,b1=2,且a1+a2+a3=b1+b2+b3+b4>20.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{bn}的前n项和Sn
人气:422 ℃ 时间:2019-08-19 12:18:02
解答
(Ⅰ)因为a1a3=a22,所以a2=±6(2分)
又因为a1+a2+a3>20,所以a2=6,故公比q=3(4分)
所以an=2•3n-1(6分)
(Ⅱ)设{bn}公差为d,所以b1+b2+b3+b4=4b1+6d=26(8分)
由b1=2,可知d=3,bn=3n-1(10分)
所以Sn
n(b1+bn)
2
3n2+n
2
(12分)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版