P为△ABC内任意一点,求证:向量AP*向量BC+向量BP*向量CA+向量CP*向量AB=0
人气:327 ℃ 时间:2019-08-19 05:44:13
解答
[[注:AP就是向量AP.
PA就是向量PA.
向量这两个字省略 ]]]
证明:
∵AP=AB+BP
∴原式
=(AB+BP)*BC+BP*CA+CP*AB
=AB*BC+BP*BC+BP*CA+CP*AB
=AB*(BC+CP)+BP*(BC+CA)
=AB*BP+BP*BA
=BP*(AB+BA)
=BP*O
=0
推荐
- p为三角形ABC中任意一点,求证;AB+BC+CA>AP+BP+CP
- 已知P是三角形ABC内一点,求证:AP+BP+CP>0.5(AB+BC+CA).
- △abc中,ab=bc=ca.∠bpc=120°,求证:ap=bp+cp
- 已知P是△ABC内一点,求证:AP+BP+CP>1/2(AB+BC+CA)
- 在三角形ABC中,点P为三角形内任意一点,连接AP、BP、CP,求证AB+BC+CA>1/2(AP+BP+CP)
- d(y)/d(x)=cos(x+y) 的通解怎么求啊
- 1:三棱锥S-ABC侧棱为L,底面边长为a,写出求此三棱锥S-ABC体积的一个算法
- 西瓜、苹果、香蕉和牛奶可不可以一起吃
猜你喜欢