若x,y,z属于R,a,b,c属于R+,求证:[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2>=2(xy+yz+zx)
人气:397 ℃ 时间:2020-03-28 22:18:09
解答
[(b+c)/a]x^2+[(c+a)/b]y^2+[(a+b)/c]z^2
=(b/a)x^2+(a/b)y^2+(c/a)x^2+(a/c)z^2+(c/b)y^2+(b/c)z^2
=[(b/a)x^2+(a/b)y^2-2xy]+[(c/a)x^2+(a/c)z^2-2xz]+[(c/b)y^2+(b/c)z^2-2yz]
=[(b/a)x^2+(a/b)y^2-2(sqrt(b)x/sqrt(a))(sqrt(a)y/sqrt(b))]
+[(c/a)x^2+(a/c)z^2-2(sqrt(c)x/sqrt(a))(sqrt(a)z/sqrt(c)]
+[(c/b)y^2+(b/c)z^2-2(sqrt(c)y/sqrt(b))(sqrt(b)z/sqrt(c))]
=[(sqrt(b)x/sqrt(a)-(sqrt(a)y/sqrt(b)]^2
+[(sqrt(c)x/sqrt(a)-(sqrt(c)z/sqrt(a)]^2
+[(sqrt(c)y/sqrt(a)-(sqrt(a)z/sqrt(c)]^2
≥0
推荐
- 已知x,y,z∈R,a,b,c∈R+,求证(b+c)/ax^2+(c+a)/by^2+(a+b)/cz^2 ≥2(xy+yz+zx)要过程
- 已知三个数x,y,z满足【x+y】分之xy=-2,【y+z】分之yz=3分之4,【z+x】分之zx=-3分之4,【xy+yz+zx】分之xyz=?
- y^2+yz+z^2=a^2,z^2+zx+x^2=b^2,x^2+xy+y^2=c^2,yz+zx+xy=0.证明:(a+b+c)(a+b-c)(a-b+c)(a-b-c)=0
- 已知三个数x,y,z满足xy/x+y=-2,yz/y+z=4/3,zx/z+x=-4/3.求xyz/xy+yz+zx的值.
- 化简x^2-yz/[x^2-(y+z)x+yz]+y^2-zx/[y^2-(z+x)y+zx]+z^2-xy/[z^2-(x+y)z+xy]
- 有两根同样长的绳子,第一根减去16米,第二根减去3.5米,第二根的长度是第一根的1.2倍,原来两根绳子各长
- 已知2/3x3m-1y3与-1/4x5y2n+1是同类项,则5m+3n的值是_.
- _____has been very coled this year.
猜你喜欢