张华同学上学途中必须经过a,b,c,d四个交通岗,其中在a.b遇到红灯的概率为1/2,在c,d遇到红灯的概率为1/3,若遇到红灯为独立事件,x表示遇到红灯次数 1.若≥=3就会迟到,求不迟到的概率 2.求E(x).
人气:361 ℃ 时间:2020-02-01 09:12:13
解答
不迟到的概率:没有红灯时:(1-1/2)x(1-1/2)x(1-1/3)x(1-1/3)=4/36一次红灯时:1/2x(1-1/2)x(1-1/3)x(1-1/3)x2+(1-1/2)x(1-1/2)x1/3x(1-1/3)x2=12/36两次红灯时:1/2x1/2x(1-1/3)x(1-1/3)+1/2x(1-1/2)x1/3x(1-1/3)x4...E(x)x=0,1,2,3,4 P(x=0)=(1-1/2)x(1-1/2)x(1-1/3)x(1-1/3)=4/36P(x=1)=1/2x(1-1/2)x(1-1/3)x(1-1/3)x2+(1-1/2)x(1-1/2)x1/3x(1-1/3)x2=12/36P(x=2)=1/2x1/2x(1-1/3)x(1-1/3)+1/2x(1-1/2)x1/3x(1-1/3)x4+(1-1/2)x(1-1/2)x1/3x1/3=13/36P(x=3)=1/2x1/2x1/3x(1-1/3)x2+(1-1/2)x1/2x1/3x1/3x2=6/36P(x=4)=1/2x1/2x1/3x1/3=1/36E(x)=0x4/36+1x12/36+2x13/36+3x6/36+4x1/36=3/5
推荐
- 张华同学上学途中必须经过a,b,c,d四个交通岗,其中在a,b岗遇到红灯的概率均为1/2,在C,D岗遇到红灯的概率
- 张华同学上学的路途中必须经过A.B.C.D四个交通岗.其中在A.B岗遇到红灯的概率为1/
- 上学途中必须经过3个交通岗,且在每一个交通岗遇到红灯的概率为1/3,他在3个交通岗是否遇到红灯是相互独力
- 李华同学上学途中必须经过ABCD,四个交通灯,其中AB岗遇到红灯的概率均为1/2,在从CD岗遇到红灯的概率是1/3
- 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
- 两个数相除,商是5,余数是15,除数最小是?
- 使用催化剂能改变反应的速率
- 数学高手求救啊!集合和不等式的题目
猜你喜欢