> 数学 >
设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限
人气:302 ℃ 时间:2019-08-18 08:31:00
解答
极限为0.5*(1+根号5).证明:设f(x)=1+(Xn-1/(1+Xn-1)),对f(x)求导,得导数为正,f(x)单调递增,又f(x)=1+(Xn-1/(1+Xn-1))小于2,有上界.利用单调有界定理知其极限存在.对Xn=1+(Xn-1/(1+Xn-1))俩边取极限,设xn的极限为a(n趋向无穷大)可得a=1+a/(1+a) 解这个方程,结果取正就可以了.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版