设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
人气:157 ℃ 时间:2019-08-18 08:00:47
解答
先用数归证1
推荐
- 设X1=1,Xn=1+(Xn-1/(1+Xn-1)),n=1,2,…,试证明数列{Xn}收敛,并求其极限
- 设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.
- 设{Xn}为一单调增加的数列,若它有一个子列收敛于a,证明当n趋向无穷时,Xn的极限为a
- 用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0) (2)X1=√2,Xn+1
- 设x1=1,数列Xn+1=1+1/Xn (n=1,2,……)证明Xn收敛,并求极限(请用单调有界或柯西准则证明)
- 甲,乙两个完全相同的圆锥体容器,甲容器中水的深度是圆锥体高的三分之一,乙容器中水的高度是容器高的三
- 六边形内角和,七边形内角和,八边形内角和,九边形内角和
- J开头Y结尾的英文单词
猜你喜欢