设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.
人气:231 ℃ 时间:2019-08-18 08:30:22
解答
首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基础)
其次证明有界:Xn+1=1/2(Xn+1/Xn)>=1/2*2*√(Xn*1/Xn)=1( 利用a+b>=2√ab).因此Xn>=1(n>1)
最后证明单调性:Xn+1-Xn=1/2(1/Xn-Xn).因为Xn>=1,因此1/Xn由单调有输准则,数列{Xn}收敛.
由上可知,其极限=1
推荐
- 设x1=1,数列Xn+1=1+1/Xn (n=1,2,……)证明Xn收敛,并求极限(请用单调有界或柯西准则证明)
- 用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0) (2)X1=√2,Xn+1
- 用数列极限的定义证明:数列{Xn}有界,又数列{Yn}的极限是0,证明数列{XnYn}的极限是0
- 设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
- 证明Xn+1=Xn+1/Xn是单调有界数列
- 若正整数a、b、c满足方程a^2+b^2=c^2,则称这一组正整数(a、b、c)为“商高数”,下面列举四组“商高数”:(3,4,5)(5,12,13)(7,24,25)(12,16,20),注意这四组商高数的结构有如下规律:4=2?3=2^
- 八十八分之十九是哪两个不同的自然数的倒数之和
- 和张( )结( )构词方式一样的词语
猜你喜欢