四边形ABCD为圆的内界四边形,对角线AC和BD交于E,延长DA,CB交于F,角CAD=60度,DC=DE,求证A为三角形BEF的外心
180度-角CAD
人气:244 ℃ 时间:2020-01-27 19:44:27
解答
DC=DE,有角DCE=角DEC,即角AEB=角ABE,所以AE=AB
角F+角AEB=120°,角FBA+角ABE=180°-角CBD=180°-角CDA=120°
即角FBA+角AEB=120°
所以角F=角FBA
即AB=AF=AE,A为三角形BEF的外心
推荐
- 四边形ABCD为圆的内界四边形,对角线AC和BD交于E,延长DA,CB交于F,角CAD=60度,DC=DE,求证A为三角形BEF的外心
- 如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′,CD=DC′,DA=AD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.
- 如图,四边形ABCD中,对角线AC、BD相交于点E.已知:DA=DC,E为AC中点.求证: (1)AC⊥BD; (2)∠ABD=∠CBD.
- 空间四边形ABCD中,E、F分别是AB和CB的中点,G、H分别是CD和AD上的点,且DG/DC=DH/DA=1/3,
- 如图,在四边形ABCD中,AD=CB,∠ACB=∠CAD.求证:AB=CD.
- 学英语的方法最快需要多少时间谢谢了,
- 《清平乐·村居》的改写小短文500字左右
- 三字经原文“此十义,人所同.”后面是“凡训蒙,须讲究”么?为什么百度百科的原文是如此但下面的三字经
猜你喜欢