ds=√[(dx)²+(dy)²]=√[(dx)²+(y')²(dx)²]=√[1+(y')²]dx
x=r(θ)cosθ,y=r(θ)sinθ
√[1+(y')²]dx=√[1+(d(rsinθ)/dx)²]dx
=√[1+((d(rsinθ)/dθ)*dθ/dx)²]*(dx/dθ)dθ
=√[(dx/dθ)²+(d(r(θ)sinθ)/dθ)²]dθ
=√[(dx/dθ)²+(r'(θ)sinθ+r(θ)cosθ)²]dθ
=√[(r'(θ)cosθ-r(θ)sinθ)²+(r'(θ)sinθ+r(θ)cosθ)²]dθ
=√[(r'(θ))²+(r(θ))²]dθ是不是因为θ趋向无穷小,最后就把sin相给去除了θ不是趋近无穷小的啊最后一步所有的sin和cos项被消掉是因为展开后cos²θ+sin²θ=1你展开试试就知道了