在△ABC中,角A,B,C所对的边分别为a,b,c,且cosA=1/3
(1)求sin²(B+C)/2+cos2A的值
(2)若a=√3,求bc的最大值
PS:
今晚之前求解答~过期关闭
人气:434 ℃ 时间:2019-12-16 19:26:12
解答
(1)sin^(B+C)=[1-cos2(B+C)]/2=[1-cos2(π-A)]/2=[1-cos(-2A)]/2=[1-cos2A]/2
原式=[1+cos2A]/2=cos^A=1/9;
(2)cosA=[b^+c^-a^]/(2bc)
即1/3=[b^+c^-3]/(2bc)>=[2bc-3]/(2bc)
所以bc<=9/4,即bc的最大值为9/4.
此类题目要根据题意和公式来做,不要觉得无从下手,首先得熟悉公式,其次要多做一些,总结共性,那么下次你看到他就会觉得很熟悉了.加油哦~~O(∩_∩)O~
推荐
- 在△ABC中,角A,B,C所对的边分别为a,b,c,且cosA=1/3,⑴求sin²[(B+C)/2]+cos2A的值 ⑵若a=根号3,求bc的最大值
- 在△ABC中,已知边c=10,又已知cosA/cosB=b/a=4/3,求a,b及△ABC的内切圆的半径.
- 在△ABC中,角A、B、C所对的边分别为a、b、c,且cosA=1/3, (1)求sin2B+C/2+cos2A的值; (2)若a=3,求bc的最大值.
- 在三角形ABC中,角A,B,C的对边分别是abc,且cosA=1/3,
- 在三角形ABC中,a,b,c分别为角ABC的对边,a=3,b=2√6,B=2A 1求cosA的值?
- 有一篇稿子共700字,小芳至少要多少分钟打完?(5分钟打字200个).
- he stayed away realizling my need of you这句话对吗?帮忙分析下语法呗谢谢
- 帮一下忙翻译成壮文
猜你喜欢