>
数学
>
⊙O中,AB为直径,CD平分∠ACB交⊙O于D,求证:
CA+CB
CD
=
2
.
人气:453 ℃ 时间:2019-11-04 05:06:25
解答
证明:过A作AM⊥CD,过B作BN⊥CD,垂足分别为M、N,∵AB为直径,CD平分∠ACB交⊙O于D,∴∠ACD=∠BCD=45°,∴△ACM与△BCN都是等腰直角三角形,AD=BD,在Rt△ACM中,CM=22AC,在Rt△BCN中,CN=22BC,∴CM+CN=22(AC...
推荐
⊙O中,AB为直径,CD平分∠ACB交⊙O于D,求证:CA+CB/CD=2.
如图,⊙O为△ABC的外接圆,弦CD平分∠ACB,∠ACB=90°,求证:CA+CB=2CD.
已知圆O的半径为1,弦CA.CB的长分别为根号2,根号3,则角ACB=多少度?
如图5,AB是圆O的直径,点C是BA延长线上一点,CD切圆O于点D,弦DE平行CB,Q是AB上的一点,CA=1,CD=根号3OA,求
如图,圆O为三角形ABC的外接圆,弦CD平分角ACB,角ACB=90度,求证CA+CB=根号2倍CD
They play basketball___every Friday afternoon
1至100 的英语怎么写
找形容写的字很有力的四字词
猜你喜欢
经度与时差的关系
正确的该如何翻译:It is not our abilities that show what we truly are,it is our choices
全国一卷中对于高中数学选修2-2 2-3的推理证明 计数原理 随机变量 统计...
阴离子交换器碱再生液为什么需要加热
空间向量求二面角的问题
已知2的a次方=1/9,4的b次方=3,8的c次方=12.试写出a、b、c之间的数量关系,并说明理由
<爱莲说>和<陋室铭>中的名句
she comes from America 的一般疑问句
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版