如图,正方形ABCD中,E、F分别是AD、DC上的点,且∠EBF=45°,求证:AE+FC=EF
人气:190 ℃ 时间:2019-08-17 16:58:30
解答
延长DC 到G,使CG=AE,连接BG
易证△ABE≌△CBG
∴∠CBG=∠ABE,BG=BE
∴∠ABE+∠FBC=90度-∠BAF=45度=∠FBC+∠CBG=∠FBG
又∵BG=BE,BF=BF
∴△BEF≌△BFG
∴EF=FG
∴AE+FC=EF
推荐
- 如图,四边形ABCD是正方形,E,F是AD,DC上的点,且∠EBF=45°,试说明:EF=CF+AE.
- 已知四边形ABCD是正方形,E、F是AD、DC上的点,且∠EBF=45°,问:EF=CF+AE成立吗?若成立,请说明理由
- 四边形ABCD是正方形,EF分别是AD,DC上的一点,且角EBF=角GBF,GC=AE求证:EF=CD+AE
- 如图,在正方形ABCD中,E,F分别是边AD,CD上的点,且AE=ED,DF/DC=k,链接EF并延长交BC的延长线于点C
- 如图9,在矩形ABCD中,AE平分角DAB交DC于点E,连接BE,过点E作EF⊥BE交AD于F.(1)求证:角DEF=角CBE;
- 一个三位小数四舍五入后的近似数是6.50这过身微笑是最大可能是多少?最小可能是多少?
- 声音的传播受不受风的影响?
- 冬日田园杂兴 兴怎么读?
猜你喜欢
- 一个化合物焰色反应呈紫色,能否肯定的说就是钾的化合物呢?要是Rb的不也是紫色的吗?
- 已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0,x∈R},若A∩B=∅,求a的取值范围.
- 函数y=lnx/x的递增区间 、/ 递减区间 / 最大值 ////要有过程
- 4.“六一”游戏会上小朋友们玩套圈游戏.套中一次可得5分,如果未套中,则一次倒扣2分,亮亮共套了20个圈
- 没有准确的数值 就一条对角线和四边形没有准确的数值 单靠对角线能确定四边形的面积吗
- 1molH2SO4中含有H2SO4分子数为多少?含H,S,O原子数分别为多少?含有电子数为?含有质子数为?
- 一根4米长的丝带,第一次用去2分之1,第二次用去2分之1米,还剩下()米
- 把铁定和碳棒用铜线连接后,浸入0.01mol/L的食盐溶液中,可能发生的现象是()?