设数列an,bn分别满足a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+
a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+
1)求数列an和bn的通项公式
人气:312 ℃ 时间:2020-04-04 03:57:26
解答
a1*a2*a3...*an*a(n+1)=1*2*3*4...*n*(n+1)
a1*a2*a3...*an=1*2*3*4...*n
两式相除
=> a1=1 ,a(n+1) = n+1 => an=n
b1+b2+b3+...bn=an^2=n^2
b1+b2+b3+...bn+b(n+1)=a(n+1)^2=(n+1)^2
两式相减
=> b1=1 ,b(n+1) = (n+1)^2 - n^2 = 2n+1
=> bn=2n-1
推荐
- 设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3且数列{a(n+1)-an}是等差数列,数列{bn-2}是等比数列
- 设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3
- 已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3. (1)若a=1,求数列{an}的通项公式; (2)若数列{an}唯一,求a的值.
- 已知数列an=n(n+1),bn=(n+1)^2,求证1/(a1+b1)+1/(a2+b2)+1/(a3+b3)+……+1/(an+bn)
- 设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列
- 空气污染怎么治理呢
- 《道德经》读后感 2000字
- a b为正实数1/a+1/b 与1/a+b大小关系及解析
猜你喜欢