等差数列{an},{bn}的前n项分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn=多少?
人气:444 ℃ 时间:2019-08-19 13:40:19
解答
∵{an}与{bn}是等差数列∴Sn=[n(a1+an)]/2Tn=[n(b1+bn)]/2∴Sn/Tn=(a1+an)/(b1+bn)∵等差数列{an}与{bn}的前n项和的比为2n:(3n+1)∴(a1+an)/(b1+bn)=2n:(3n+1)假设(n+1)/2 =k {(n+1)/2为项数}则n=2k-1则ak/bk = 2(2k...
推荐
- 等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=( ) A.23 B.2n−13n−1 C.2n+13n+1 D.2n−13n+4
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1 ,则an/bn=
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn等于多少?
- 等差数列{an},{bn}的前n项和分别为Sn和Tn,若SnTn=2n/3n+1,则limn→∞anbn=_.
- 3除以11的商的小数点后面第10位上的数是( );小数点后面67位数的和是( ).
- 若数列an满足 0
- Look,a bird is flying t( ) the window of our classroom.
猜你喜欢