设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成等差数列,求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an
人气:492 ℃ 时间:2019-08-20 12:32:22
解答
你好很高兴回答你的问题2Sn=a(n+1)-2^(n+1)+1令n=1,2联立(a2+5)*2=a1+a3得a1=12an=2sn-2sn-1=a(n+1)-an-2^n即a(n+1)=3an+2^n所以a(n+1)+2^(n+1)=3*(an+2^n)an+2^n=(a1+2^1)*3^(n-1)=3^nan=3^n-2^n证明...
推荐
- 设数列{an}的前n项和为Sn满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式.
- 设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列
- 设数列{an}的前n项和为Sn满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式.
- 设数列{an}的前n项和为sn,满足2sn=a(n+1)-2^(n+1)+1,n属于n*.且a1,a2+5,a3成等差数列.
- 已知数列{an}的前n项和为Sn,a2=4,且满足2Sn=n(an+1)(n∈N*).(1)求a1,a3,a4
- 翻译成英语:我们在机场不期而遇 we met at the airport_____ _____
- 已知实数集合A={a+b√2|a,b∈Q},B={a+b√3|a,b∈Q}.对于实数集合X、Y,集合X+Y定义为:X+Y={x+y|x∈X,y∈Y};集合X×Y={xy|x∈X,y∈Y}.
- 连词成句:you,want,to,do,go,a,to,movie,with,me
猜你喜欢