设a1,a2,a3,…,an(n∈N*)都是正数,且a1a2a3•…an=1,试用数学归纳法证明:a1+a2+a3+…+an≥n.
人气:416 ℃ 时间:2020-03-22 23:17:16
解答
证明:①当n=1时,不等式成立
②假设当n=k-1时成立,则当n=k时,考虑等式a1a2a3•…•ak=1
若a1,a2,a3,…,ak相同,则都为1,不等式得证
若a1,a2,a3,…,ak不全相同,则a1,a2,a3,…,ak的最大数和最小数不是同一个数
不妨令a1为a1,a2,a3,…,ak的最大数,a2为a1,a2,a3,…,ak的最小数.
则∵a1a2a3•…•ak=1,∴最大数a1≥1,最小数a2≤1
现将a1a2看成一个数,利用归纳假设,有a1a2+a3+…+ak≥k-1…(1)
由于a1≥1,a2≤1,所以(a1-1)(a2-1)≤0
所以a1a2≤a1+a2-1…(2)
将(2)代入(1),得
(a1+a2-1)+a3+…+ak≥k-1,即a1+a2+a3+…+ak≥k
∴当n=k时,结论正确
综上可知,a1+a2+a3+…+an≥n.
推荐
- 用数学归纳法证明:(a1+a2+…+an)^2=a1^2+a2^2+…a3^3+2(a1a2+^
- 【高二】已知数列{an}满足Sn=2n-an 计算a1 a2 a3 猜想an 并用数学归纳法证明
- 已知数列an=a(n-1)+a(n-2)+a(n-3).a1=1,a2=2,a3=3 用数学归纳法证明 an
- 数列{an}中,a1=0,a2=3,a3=2,且an≥0,an+1·an=(an-1+2)(an-2+2)(n≥3,n∈N*).试用数学归纳法证明:当
- (a1+a2+a3+.+an)^2=a1^2+a2^2+.+an^2+2(a1a2+a2a3+...+a(n-1)an) ;n≥2.求用数学归纳法证明
- she speak very___(clear),so it is easy to follow her
- because of the lucky money he got是什么从句,
- 农夫和蛇是成语吗?
猜你喜欢
- 表示"想"的四字成语
- 销售给红星工厂甲产品100件,每件售价300元,计30000元,增值税销售项税额5100元,款项己收银行存款户
- 火星—地球之间有什么关系?
- 某工厂去年实际产值2400万元,比计划增长3/5,计划产值多少万元?
- 鸡的脚比兔的脚少24只,鸡有多少只,兔有多少只?
- 为你的幸福,我会不惜一切代价英文怎么说?
- 关于正方形剪成三角形的问题
- 某市中学生举行足球赛,共赛17轮,计分方法是胜一场得3分,平一场得1分,负一场得0分,在这次足球赛中,若