∴AD⊥BC,
∴∠ADB=90°,∠ADC=90°,
在Rt△ABD和Rt△ADC中,
∵tanB=
| AD |
| BD |
| AD |
| AC |
又∵tanB=cos∠DAC,
∴
| AD |
| BD |
| AD |
| AC |
∴AC=BD.
(2)在Rt△ADC中,sinC=
| 12 |
| 13 |
故可设AD=12k,AC=13k,
∴CD=
| AC2−AD2 |
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k
由已知BC=12,
∴18k=12,
∴k=
| 2 |
| 3 |
∴AD=12k=12×
| 2 |
| 3 |

| 12 |
| 13 |
| AD |
| BD |
| AD |
| AC |
| AD |
| BD |
| AD |
| AC |
| 12 |
| 13 |
| AC2−AD2 |
| 2 |
| 3 |
| 2 |
| 3 |