P是直线l:x-3y-2=0上的动点PA,PB是圆x^2+y^2+4x-4y+7=0的切线AB是切点C是圆心求四边形PACB面积最小值
人气:224 ℃ 时间:2020-04-08 11:09:42
解答
设点P的坐标为(a,b)
根据题意可以得到AP,BP的切线方程为:
(x1+2)(x+2)+(y1-2)*(y-2)=1
(x2+2)(x+2)+(y2-2)*(y-2)=1
由因为它们都经过点P,
=>(x1+2)(a+2)+(y1-2)*(b-2)=1
(x2+2)(a+2)+(y2-2)*(b-2)=1
因为由以上二式可以看出A,B的坐标都适合方程=>(x+2)(a+2)+(y-2)*(b-2)=1
所以直线AB的方程为(x+2)(a+2)+(y-2)*(b-2)=1
=>四边形PACB面积=1/2*BC*BP=1/2*1*BP,
要令其面积最小就要使直线BP的长度最小,
=>CP^2-BC^2要最小
=>CP^2的长度要最小
=>点P的坐标为(3b+2,b)
(3b+2+2)^2+(b-2)^2
经过配方得到:当b=-1时,有最小值10
则四边形APCB的面积的最小值为(根号10)
推荐
- 已知点P是直线x+y+6=0上的动点,PA、PB是圆x2+y2-2x-2y+1=0的两条切线,A、B为切点,C为圆心,则当四边形PACB的面积最小时,点P的坐标是_.
- 已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为_.
- 设P是直线3X+4y+8=0上的动点,PA、PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
- 已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为_.
- 已知P是直线3x+4y+8=0的动点,PA,PB是圆x^2+y^2-2x-2y+1=0的两条切线,A,B是两个切点,C是圆心,求四边形PACB的面积的最小值,并求此时点P的坐标.
- 咏雪全文的朗读节奏划分
- The question who .它们是什么从句,怎样区分这样的从句?
- 已知二次不等式ax^2+bx+c>0的解集为{x|-1
猜你喜欢