在△ABC中,A、B、C分别为三角形内角,a、b、c为其所对边,已知2√2*(sin^2A-sin^2C)=(a-b)sinB,△ABC外接圆半径为√2.
(1)求角C;
(2)求S△ABC的最大值.
人气:206 ℃ 时间:2019-10-10 05:00:32
解答
△ABC外接圆半径为√2
R=√2
由正弦定理得
a=2RsinA
sinA=a/2√2
sin^2 A=a^2/8
sin^2 C=c^2/8
sinB=b/2√2
2√2(sinA^2-sinC^2)=(a-b)SinB
2√2(a^2-c^2)/8=(a-b)b/2√2
a^2-c^2=ab-b^2
a^2+b^2-c^2=ab
由余弦定理得
cosC=(a^2+b^2-c^2)/2ab=1/2
C=60
推荐
- 已知⊙O的半径为R,它的内接三角形ABC满足2R(sin^2A-sin^2C)=(√2a-b),sinB,求三角形面积最大值.
- 在△ABC中,A、B、C分别为三角形内角,a、b、c为其所对边,已知2√2*(sin^2A-sin^2C)=(a-b)sinB
- 已知圆O的半径为R,它的内接三角形ABC中,2R(sin^2A-sin^2C)=[(√2)a-b]sinB成立.求三角形ABC面积S的最
- 已知三角形ABC中,2*根号2(sin^2A-sin^2C)=(a-b)sinB,三角形ABC的外接圆半径为根号
- 若三角形ABC内接于半径为R的圆,且2R(sin^2A-sin^2C)=(根号2a-b)sinB,求三角形的最大面积?
- 歪歪扭扭 是什么意思
- 氧化还原反应与电子转移的问题?
- love thou,so I choose to leave...for jinyn and huin
猜你喜欢
- 白兔的只数是黑兔的2/5,灰兔的只数是白兔的1/3,有灰兔2只,你知道黑兔有多少只吗?
- 你怎样做一份苹果奶昔呢?用英语怎么说?
- 什么是光波的波长
- his father loves he very much/his father loves him very much 这两个句子那个对
- 函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x²–x+1,那么当x>1时,f(x)的
- Do you know the girl __the red sweater?Awear Bwore Cin 为何in 不行,
- 冯骥才日历北师大课后练习题~
- 设区域D:x²+y²=2x与x轴围成的上半圆,则二重积分∫∫f(x,y)dxdy=?(用极坐标法表示)