> 数学 >
a+b+c=1,a、b、c∈R+,证明:[1/(1-a)]+[1/(1-b)]+[1/(1-c)]≥[2/(1+a)]+[2/(1+b)]+[2/(1+c)]
人气:482 ℃ 时间:2020-10-01 23:37:16
解答
所证即:[1/(b+c)]+[1/(a+c)]+[1/(a+b)]≥[2/(a+b+a+c)]+[2/(a+b+b+c)]+[2/(a+c+b+c)](就是充分利用a+b+c=1代入)令a+b=x,b+c=y,a+c=z上式等价于证明:1/x+1/y+1/z≥2[1/(x+y)+1/(x+z)+1/(z+y)](1)为了证明这个...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版