求曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(π/2-1,1,2√2)处的切线及法平面方程,求详解
对应参数值 t = π/2 怎么求来的?
人气:267 ℃ 时间:2020-04-03 10:53:14
解答
曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(π/2-1,1,2√2) 对应参数值 t = π/2
[对应参数值 t = π/2 这样求来的
由 y=1-cost y=1
得 1=1-cost
cost=0
∴ t = π/2
]
切向量 T = ( x'(t),y'(t),z'(t) ) | t=π/2
= ( 1-cost,sint,2 cos(t/2) ) | t=π/2
= (1,1,√2 )
从而 切线方程 x - (π/2-1) = y - 1 = (z - 2√2) / √2
法平面方程 x - (π/2-1) + y - 1 +√2 (z - 2√2) = 0
即 x + y + √2 z - π/2 - 4 = 0
推荐
- 求曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(π/2-1,1,2√2)处的切线及法平面方程,求详解.思路也可以.是否用t作联系x.y.
- 求曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(∏/2-1,1,2√2)处的切线方程和法平面方程
- 曲线方程 x=t+1+sint y=t+cost 求曲线在x=1处的切线方程 (要过程 谢谢)
- 求曲线x=sint+t,y=cost,z=e^t-1 在点(0 1 0)处的切线方程与法平面方程
- 求曲线 x=sint,y=cost.在t=π/4处 的 切线方程与法线方程.
- 微观经济学价格领导模型问题
- 如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.
- 0到9 取5位数字的排列 即00000-99999 共十万个 请问如何用数学算法(排列组合)计算出?
猜你喜欢