f(x)=2sin^2x+cos^2x+sinxcosx,x∈R,f(π/12)
f(x)=2sin^2x+cos^2x+sinxcosx,x∈R
求:
1) f(π/12)的值
2) f(x)的最小值及相应x的值
3) f(x)的递增区间
人气:492 ℃ 时间:2020-05-25 10:15:56
解答
f(x) = 2sin^2x+cos^2x+sinxcosx
= 1 + sin^2x + 1/2sin2x
= 1 + (1 - cos2x)/2 + 1/2sin2x
= 3/2 + 1/2(sin2x - cos2x)
= 3/2 + 1/sqrt(2) (sin(2x - π/4))
所以f(π/12) = 3/2 + 1/sqrt(2) * sin(-π/12) = (7 - sqrt(3))/4
min(f(x)) = 3/2 - 1/sqrt(2) = (3 - sqrt(2))/2 此时 2x - π/4 = -π/2, x =-π/8
f(x)在[ -π/8 + kπ,3π/8 + kπ]上递增
推荐
猜你喜欢
- 转换We hope you can come to the party tonight.We hope you __ __ __ __ come to the party tonight
- 某公司六月份用电量是五月份用电量的80%,六月份用电量比五月份少百分之几
- The reason I plan to go is ____________if I don't.
- 食品包装袋上的保质期“常温”是指在摄氏多少度之间的温度?
- 英语翻译
- 英语翻译
- 某公司拟于5年后一次还清所欠债务100000元,假定银行利息率为10%,(F/A,10%,5)=6.1051,(P/A,10%,5)=3.7908,则应从现在起每年末等额存入银行的偿债基金为多少?
- 设sinA是sinB.cosB的等差中项,sinC是sinB.cosB的等比中项,求证.cos4C-4cos4A=3