设
f1(x)=,定义f
n+1(x)=f
1[f
n(x)],
an=,其中n∈N
*,则数列{a
n}的通项______.
人气:445 ℃ 时间:2019-09-17 16:50:47
解答
(1)∵f1(0)=2,a1=2−12+2=14,fn+1(0)=f1[fn(0)]=21+fn(0),∴an+1=fn+1(0)−1fn+1(0)+2=21+fn(0)−121+fn(0)+2=1−fn(0)4+2fn(0)=-12•fn(0)−1fn(0)+2=-12an,∴q=an+1an=-12,∴数列{an}是首项为14,公...
推荐
- 设f1(x)=2/1+x,定义fn+1(x)=f1[fn(x)],an=fn(0)−1fn(0)+2,其中n∈N*,则数列{an}的通项_.
- f1(x)=2/(x+1),而fn+1=f1[fn(x)],设an=[fn(2)-1]/[fn(2)+2],则a99=
- 设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2],则a(2007)等于
- 已知f1(x)=(2x-1)/(x+1),fn+1(x)=f1[fn(x)](n=1,2,3,……),求f30(x)
- f(x)=x/(1+x) x>=0f1(X)=f(X) fn(X)=fn-1[fn-1(x)]
- He doesn't suppose that you'll come in time,_______?A does he B,will you
- Tom()(be)ill last week,he()(be)much better now.用所给词的适当形式填空.
- Which month has 28 days?
猜你喜欢