已知f1(x)=(2x-1)/(x+1),fn+1(x)=f1[fn(x)](n=1,2,3,……),求f30(x)
人气:247 ℃ 时间:2019-08-22 14:31:43
解答
f2(x)={2[(2x-1)/(x+1)]-1}/{[(2x-1)/(x+1)]+1}
=(x-1)/x
f3(x)={2[(x-1)/x]-1}/{[(x-1)/x]+1}
=(x-2)/(2x-1)
f4(x)={2[(x-2)/(2x-1)]-1}/{[(x-2)/(2x-1)]+1}
=-1/(x-1)
f5(x)={2[-1/(x-1)]-1}/{[-1/(x-1)]+1}
=(-x-1)/(x-2)
f6(x)={2[(-x-1)/(x-2)]-1}/{[(-x-1)/(x-2)]+1}
=x
f7(x)=(2x-1)/(x+1)=f1(x)
所以从f1(x)到f6(x)每6个一循环
30=4*6+6
所以f30(x)=f6(x)=x
推荐
- 已知函数f1(x)=(2x-1)/(x+1) 对于n∈N* 定义fn+1(x)=f1( fn(x)) 求fn(x)解析式
- 已知f1(x)=(2x-1)/(x+1),对于n=1,2,…,定义fn+1(x)=f1(fn(x)),若f35(x)=f5(x),则f28(x)=?
- 已知f(x)=x/1-x,设f1(x)=f(x),fn(x)=fn-1〔fn-1(x)〕(n>1且n∈⊥正整数),求fn(x)(n∈正整数)的表达式
- 设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的图像恒过定点 .
- 已知函数f(x),x∈R,且f1(x)=2x,记f(f(f(x…))=fn(x)【其中n为几就有几个f】,求f4(x)=?
- important和party等单词读音
- 双缝干涉和单缝衍射
- 英语小故事,短一点,四年级能读下来的.
猜你喜欢