> 数学 >
已知向量a和b的夹角为120度,且|a|=4,|b|=2,求:(1)|a+b|;(2)|3a-4b|;(3)|(a+b)*(a+2b)|
人气:321 ℃ 时间:2019-12-14 19:35:25
解答
向量a和b的夹角为120度,则:a*b=|a|*|b|*cos=4*2*cos2π/3=-4,
而 a^2=|a|^2=16,b^2=|b|^2=4.所以
(1) |a+b|^2=(a+b)^2=a^2+2ab+b^2=16-2*4+4=12,
|a+b|=2√ 3;
(2) |3a-4b|^2=(3a-4b)^2=9a^2-24ab+16b^2=9*16+24*4+16*4=304,
|3a-4b|=4√19;
(3) |(a+b)*(a+2b)|=|a^2+3ab+2b^2|=|16-3*4+2*4|=12.
其实 向量数量积的运算与代数式的运算类似.也符合完全平方公式,平方差公式等.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版