| k |
| k+1 |
-1≤-
| k |
| k+1 |
解得k>0 x在(0,1]g(x)=x-kx-k=(1-k)x-k 令g(x)=0 x=
| k |
| k+1 |
0<
| k |
| k+1 |
| 1 |
| 2 |
| 2−k |
| k+1 |
1<
| 2−k |
| k+1 |
| 1 |
| 2 |
x在(2,3]g(x)=x-2-kx-k=(1-k)x-2-k 令g(x)=0 x=
| k+2 |
| 1−k |
2<
| k+2 |
| 1−k |
| 1 |
| 4 |
| 1 |
| 4 |
故答案为:(0,
| 1 |
| 4 |
| k |
| k+1 |
| k |
| k+1 |
| k |
| k+1 |
| k |
| k+1 |
| 1 |
| 2 |
| 2−k |
| k+1 |
| 2−k |
| k+1 |
| 1 |
| 2 |
| k+2 |
| 1−k |
| k+2 |
| 1−k |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |